Flux Cored Welding Wire

Austenitic Stainless welding wire (High C, dissimilar joints)

Classifications

AWS A5.22-2012 : E309HT1-1

Description

- · K-309HT is designed for MAG welding of high carbon 22%Cr-12%Ni stainless steels(STS 309) and recommended to be use for high temperature service (about 600℃)
- It is a titania type of flux cored wire for all-position welding and has excellent feedability and increased creep resistance at elevated temperature.
- · The weld metal contains optimum ferrite contents in their austenitic micro structures and their weldability is excellent with lower crack susceptibility.

Welding positions

Polarity & shielding gas

- CO2: 100% CO2 (15~20Q/min)
- DCEP (DC+)

Typical chemical composition of all-weld metal (%)								
Shielding gas	С	Si	Mn	Cr	Ni	FN		
CO2	0.06	0.74	1 //2	23.45	12.20	1/		

Typical mecha	anical properti	es of all-weld me	etal		
	Y.S (MPa)	T.S (MPa)	EI. (%)	IV (J) -40℃	Remarks
AWS A5.22 Example	446	min. 550 583	min. 30 38	37	CO ₂

Notes on usage and welding condition

· Refer to page 313 for more information on usage · When heat input is excessive, base metal will be bended or distorted due to the bad heat conductivity. Therefore, perform welding with selecting proper heat input

Package		
Dia. (mm)	0.9 1	.2 1.6
Spool (kg)	5 12	5 15